martes, 27 de julio de 2010

Unidad IV

Cromatografía

Es un método físico de separación para la caracterización de mezclas complejas, la cual tiene aplicación en todas las ramas de la ciencia y la física. Es un conjunto de técnicas basadas en el principio de retención selectiva, cuyo objetivo es separar los distintos componentes de una mezcla, permitiendo identificar y determinar las cantidades de dichos componentes.

Las técnicas cromatográficas[1] son muy variadas, pero en todas ellas hay una fase móvil que consiste en un fluido (gas, líquido o fluido supercrítico) que arrastra a la muestra a través de una fase estacionaria que se trata de un sólido o un líquido fijado en un sólido. Los componentes de la mezcla interaccionan en distinta forma con la fase estacionaria. De este modo, los componentes atraviesan la fase estacionaria a distintas velocidades y se van separando. Después de que los componentes hayan pasado por la fase estacionaria, separándose, pasan por un detector que genera una señal que puede depender de la concentración y del tipo de compuesto.

Diferencias sutiles en el coeficiente de partición de los compuestos da como resultado una retención diferencial sobre la fase estacionaria y por tanto una separación efectiva en función de los tiempos de retención de cada componente de la mezcla.

La cromatografía puede cumplir dos funciones básicas que no se excluyen mutuamente:

  • Separar los componentes de la mezcla, para obtenerlos más puros y que puedan ser usados posteriormente (etapa final de muchas síntesis).
  • Medir la proporción de los componentes de la mezcla (finalidad analítica). En este caso, las cantidades de material empleadas son pequeñas.

Clasificación[


Las distintas técnicas cromatográficas[3] se pueden dividir según cómo esté dispuesta la fase estacionaria:

La cromatografía de gases es útil para gases o para compuestos relativamente volátiles, lo que incluye a numerosos compuestos orgánicos. En el caso de compuestos no volátiles se recurre a procesos denominados de "derivatización", a fin de convertirlos en otros compuestos que se volatilizen en las condiciones de análisis.

Dentro de la cromatografía líquida destaca la cromatografía líquida de alta resolución (HPLC, del inglés High Performance Liquid Chromatography), que es la técnica cromatográfica más empleada en la actualidad, normalmente en su modalidad de fase reversa, en la que la fase estacionaria tiene carácter no polar, y la fase móvil posee carácter polar (generalmente agua o mezclas con elevada proporción de la misma, o de otros disolvente polares, como por ejemplo metanol). El nombre de "reversa" viene dado porque tradicionalmente la fase estacionaria estaba compuesta de sílice o alúmina, de carácter polar, y por tanto la fase móvil era un disolvente orgánico poco polar.

Una serie eluotrópica, es un rango de sustancias de diferentes polaridades que actúan como fase móvil y que permiten observar un mejor desplazamiento sobre una fase estacionaria.

Tipos

Fase móvil

Fase estacionaria

Cromatografía en papel

Líquido

Líquido ( moléculas de agua contenidas en la celulosa del papel )

Cromatografía en capa fina

Líquido

Sólido

Cromatografía de gases

Gas

Sólido o Líquido

Cromatografía líquida
en fase inversa

Líquido (polar)

Sólido o Líquido (menos polar)

Cromatografía líquida
en fase normal

Líquido (menos polar)

Sólido o líquido
(polar)

Cromatografía líquida
de intercambio iónico

Líquido (polar)

Sólido

Cromatografía líquida
de exclusión

Líquido

Sólido

Cromatografía líquida
de adsorción

Líquido

Sólido

Cromatografía de
fluidos supercríticos

Líquido

Sólido

Términos empleados en cromatografía

  • Analito es la substancia que se va a separar durante la cromatografía.
  • Cromatografía analítica se emplea para determinar la existencia y posiblemente también la concentración de un analito en una muestra.
  • Fase enlazada es una fase estacionaria que se une de forma covalente a las partículas de soporte o a las paredes internas de la columa.
  • Cromatograma es el resultado gráfico de la cromatografía. En el caso de separación óptima, los diferentes picos o manchas del cromatograma se corresponden a los componentes de la mezcla separada.

Cromatograma con picos no resueltos (separados)Cromatograma con  dos picos resueltos

En el eje X se representa el tiempo de retención, y en el eje Y una señal (obtenida, por ejemplo, a partir de un espectrofotómetro, un espectrómetro de masas o cualquier otro de los diversos detectores) correspondiente a la respuesta creada por los diferentes analitos existentes en la muestra. En el caso de un sistema óptimo, la señal es proporcional a la concentración del analito específico separado.

  • Cromatógrafo es el equipo que permite una separación sofisticada. Por ejemplo, un cromatógrafo de gases o un cromatógrafo de líquidos.
  • Cromatografía es el método físico de separación en el cual los componentes que se van a separar se distribuyen entre dos fases, una de las cuales es estacionaria (fase estacionaria) mientras la otra (la fase móvil) se mueve en una dirección definida.
  • Efluente es la fase móvil que atraviesa la columna.
  • Serie eluotrópica es una lista de disolventes clasificados según su poder de dilución.
  • Fase inmovilizada es una fase estacionaria que está inmovilizada sobre partículas de soporte, o en la pared interior del tubo contenedor o columna.
  • Fase móvil es la fase que se mueve en una dirección definida. Puede ser un líquido (cromatografía de líquidos o CEC). un gas (cromatografía de gases) o un fluido supercrítico (cromatografía de fluidos supercríticos). La fase móvil consiste en la muestra que está siendo separada/analizada y el disolvente, que se mueven por el interior de la columna. En el caso de la cromatografía líquida de alta resolución, HPLC, la fase móvil es un disolvente no-polar como el hexano (fase normal) o bien algún disolvente polar (cromatografía de fase reversa) y la muestra que va a ser separada.. La fase móvil se mueve a través de la columna de cromatografía (fase estacionaria) de forma que la muestra interacciona con la fase estacionaria y se separa.
  • Cromatografía preparativa se usa para purificar suficiente cantidad de sustancia para un uso posterior, más que para análisis.
  • Tiempo de retención es el tiempo característico que tarda un analito particular en pasar a través del sistema (desde la columna de entrada hasta el detector) bajo las condiciones fijadas. Véase también: Índice de retención de Kovats
  • Muestra es la materia que va a as er analizada en la cromatografía. Puede consistir en un simple componente o una mezcla de varios. Cuando la mezcla es tratada en el curso del análisis, la fase o fases que contienen los analitos de interés es llamada igualmente muestra mientras el resto de sustancias cuya separación no resulta de interés es llamada residuo.
  • Soluto es cada uno de los componentes de la muestra que va a ser separado.
  • Disolvente es toda sustancia capaz de solubilizar a otra,y especialmente la fase líquidamóvil en cromatografía de líquidos.
  • Fase estacionaria es la sustancia que está fija en una posición en el procedimiento de la cromatografía. Un ejemplo es la capa de silica en la cromatografía en capa fina.

La cromatografía en capa fina se basa en la preparación de una capa, uniforme, de un adsorbente mantenido sobre una placa de vidrio u otro soporte. Los requisitos esenciales son, pues, un adsorbente, placas de vidrio, un dispositivo que mantenga las placas durante la extensión, otro para aplicar la capa de adsorbente, y una cámara en la que se desarrollen las placas cubiertas. Es preciso también poder guardar con facilidad las placas preparadas y una estufa para activarlas.

La fase móvil es líquida y la fase estacionaria consiste en un sólido. La fase estacionaria será un componente polar y el eluyente será por lo general menos polar que la fase estacionaria, de forma que los componentes que se desplacen con mayor velocidad serán los menos polares.

Polaridad de los compuestos orgánicos en orden creciente:

hidrocarburos < olefinas < fluor < cloro < nitro < aldehído

aldehído < ester < alcohol < cetonas < aminas < ácidos < amidas

Ventajas de la cromatografía en capa fina

La cromatografía en capa fina presenta una serie de ventajas frente a otros métodos cromatográficos (en columna, en papel, en fase gaseosa, ...) ya que el utillaje que precisa es más simple. El tiempo que se necesita para conseguir las separaciones es mucho menor y la separación es generalmente mejor. Pueden usarse reveladores corrosivos, que sobre papel destruirían el cromatograma. El método es simple y los resultados son fácilmente reproducibles, lo que hace que sea un método adecuado para fines analíticos.

Adsorbentes

Al realizar la elección del adsorbente se debe tener en cuenta el tamaño de las partículas del adsorbente, cuanto más finamente dividido esté mayor será su adhesión al soporte, aunque también se le puede añadir un adherente (yeso,...). Algunos de los adsorventes más utilizados son:

  • Celulosa
  • Almidón
  • Azucares
  • Gel de sílice (silicagel)
  • Óxido de aluminio (alúmina)
  • Carbón activo (carbón en polvo)
  • Kieselguhr

Los tres primeros se utilizan para extraer componentes polifuncionales de plantas y animales.

Silicagel

El gel de sílice o ácido silícico es uno de los más utilizados, es débilmente ácido, su pH oscila entre 4-5. Con lo cual no se deberá utilizar con sustancias que se corrompan con los ácidos. Los geles de sílice normales suelen contener impurezas de hierro y/o aluminio, este factor también se debe tener en cuentas respecto al uso de componentes. El tamaño del grano suele ser de 10 a 40 micras (µ) y el tamaño de poro varía de 20 a 150Å.

Generalmente lleva incorporado un agente aglomerante, yeso (sulfato de cálcico semihidratado), para proporcionar firmeza al adsorbente. También han sido incorporados dos indicadores del ultravioleta, juntos o por separados (amarillo y/o verde), en diversos tipos de gel de sílice.

Se trata de un adsorbente polar, pero puede ser tratado con hidrocarburos para neutralizar los grupos -OH, de forma que se haga apto para separar componentes lipófilos (esteroides, ácidos grasos, ceras, vitaminas liposolubles, etc). A este proceso se le denomina cromatografía de fase reversa (silanizado).

Alúmina

La alúmina u óxido de aluminio es un adsorbente ligeramente básico debido a que en el proceso de extracción de la alúmina a partir de la bauxita quedan algunas moléculas de hidróxido de aluminio adheridas a la alúmina, dándole a ésta un carácter básico. No consigue un desarrollo tan alto de la sustancia depositada como el gel de sílice.

La alúmina puede ser tratada químicamente para conseguir alúminas ácidas, básicas y neutras. Puede contener aglomerantes y/o indicadores ultravioletas. Es un adsorbente de carácter polar, de tal forma que retendrá con mayor avidez a los componentes polares.

Preparación de placas.

El adsorvente se deslíe en agua destilada. Para mezclar la papilla homogéneamente es preferible agitar de modo mecánico. La proporción de adsorbente y agua depende del tipo de adsorbente. Dos parte de agua y una de adsorbente pueden tomarse como norma general, no obstante, habrán de consultarse la instrucciones del fabricante.

Originariamente se utilizaban, como soporte del adsorbente, láminas de vidrio, pero en la actualidad también se utilizan láminas de otros compuestos orgánicos más flexibles. Dependiendo del tipo de separación que se desee (cualitativa o preparativa) se utilizará un tamaño de placa u otro. En general para realizar una separación preparativa de un gramo de muestra es necesario una placa de vidrio de 20x20 cm., 35 gramos de adsorbente y 80 ml. de agua destilada.

Las propiedades de la fase estacionaria pueden alterarse mediante la adición de compuestos tales como disoluciones tamponadoras para mantener el pH deseado. En la preparación de las placas también se pueden adicionar indicadores fluorescentes o aglomerantes.

Cabe destacar la adición de nitrato de plata (AgNO3), a este proceso se le denomina argentación, y se utiliza para separar componentes insaturados.

El espesor de la placa es otro factor a tener en cuenta al preparar la placa, en general suele ser de:

0.1-0.2 mm. para separaciones analíticas.

0.5- 2 mm. para separaciones preparativas.

La placa debe quedar libre de grumos y rugosidades, que afectarían al desarrollo del proceso cromatográfico. Para ello existen en el mercado extensores que se utilizan para crear de forma mecánica placas homogéneas del espesor deseado. Si no se disponer de extensor, el proceso a seguir es el siguiente:

  1. Mezclar en un Erlenmeyer el agua y el adsorbente.
  2. Agitar enérgicamente.
  3. Extender la papilla sobre el soporte de vidrio.
  4. Hacer oscilar la papilla de un lado a otro.
  5. Golpear con el dedo la parte inferior del soporte.

Las placas, normalmente, se dejan reposar un corto espacio de tiempo después de cubrirlas; luego se colocan en bandejas metálicas. En este momento puede activarse el agente adsorbente, bien dejando las placas reposar toda la noche a temperatura ambiente, bien calentándolas durante 30-60 minutos a 105-110 ºC (las placas de celulosa no deben calentarse más de 10 minutos a 105 ºC) para expulsar así el aire. Es conveniente dejar secar las placas inicialmente al aire, para evitar los agrietamientos que se producirían por efecto del cambio de temperatura.


Aplicación de las muestras

Los productos a examinar se disolverán, cuando sea posible, en un disolvente orgánico no polar que tenga un punto de ebullición lo suficientemente bajo para que se evapore después de la aplicación.. Sin embargo a menudo se necesitan disolventes polares; la mezcla cloroformo:metanol (1:1) es efectiva. Frecuentemente se emplean disoluciones al 1%, de manera que al aplicar 2 µl resulta en la carga 20 µg de producto sólido. Muchos reactivos de revelado llegan a detectar 0.1 µg de material; por esto con esta carga puede llegarse a observar un 5% de impurezas.

Existen una gran variedad de micropipetas y microjeringuillas para realizar el proceso de siembra de la muestra a analizar. También pueden usarse tubos capilares. El proceso de siembra se realiza tocando con la punta del capilar (micropipeta, jeringuilla, etc) sobre la placa preparada. Dejando una distancia al borde inferior de un centímetro aproximadamente. El punto de aplicación de la muestra se denomina toque.

Una vez colocado el toque se deja secar para evaporar el disolvente, de forma que en la placa solo quedará la muestra a analizar.

Elección del eluyente

La elección del eluyente dependerá lógicamente del componente que se va a separar y del material en que la separación se lleva a cabo.

Principales eluyentes en orden creciente de polaridad:

Eter de petróleo.
Eter dietílico.
Ciclohexano.
Acetato de etilo.
Tetracloruro de carbono.*
Piridina.
Benceno.*
Etanol.
Cloroformo.*
Metanol.
Diclorometano.
Agua.
Ácido acético.

*compuestos cancerígenos.

En la elección del eluyente influyen varios factores:

  • Precio.
  • Pureza.
  • No utilizar mezclas de eluyentes (reproducibilidad).
  • No utilizar compuestos muy volátiles.
  • Evitar que contengan trazas de metales (catalizadores).

La elección del eluyente se realiza de forma empírica. Hay que estudiar la polaridad del componente y probar con eluyentes cada vez menos polares.

Elección del eluyente

a) Toque de la muestra sin aplicar ningún eluyente.

b) Aplicando un eluyente poco polar.

c) Aplicando un eluyente más polar.

Al aplicar en primer lugar eluyentes poco polares, podemos seguir utilizando la misma placa para aplicar otros eluyentes más polares, hasta dar con el más apropiado.

Otra técnica para realizar la elección del eluyente consiste en sembrar varias muestras distanciadas suficientemente, y aplicar con un tubo capilar distintos eluyentes sobre el centro de cada muestra. Esto permite desarrollar cada eluyente radialmente por capilaridad, de forma que se aprecie el eluyente con el cual la separación se realiza de una manera más eficaz.

Desarrollo de la cromatografía

El desarrollo de los cromatogramas en capa fina se realiza normalmente por el método ascendente, esto es, al permitir que un eluyente ascienda por una placa casi en vertical, por la acción de la capilaridad. La cromatografía se realiza en una cubeta. Para conseguir la máxima saturación posible de la atmósfera de la cámara, las parades se tapizan con papel impregnado del eluyente. A veces pueden obtenerse separaciones mejores sin poner papeles en las paredes, cosa que no debe olvidarse.

Generalmente el eluyente se introduce en la cámara una hora antes del desarrollo, para permitir la saturación de la atmósfera. El tiempo de desarrollo, por lo general, no llega a los 30 minutos. El tiempo de una cromatografía cualitativa suele ser de un par de minutos, mientras que el tiempo de una cromatografía preparativa puede llegar a un par de horas.

Las placas pueden desarrollarse durante un tiempo prefijado, o hasta que se alcance una línea dibujada a una distancia fija desde el origen. Esto se hace para estandarizar los valores de RF. Frecuentemente esta distancia es de 10 cm.; parece ser la más conveniente para medir valores de RF. Después del desarrollo, las placas pueden secarse rápidamente con una corriente de aire caliente.

La mejor posición de desarrollo para un componente es el punto medio entre el origen y el frente del eluyente, ya que permite separar las impurezas que se desplazan con mayor y menor velocidad. El frente del eluyente nunca debe llegar a tocar el borde de la placa.

Si la placa se estropea por acción del aire o de la luz, se secará en una cámara que contenga un gas inerte o aislada de la luz.

Localización de sustancias

Si los compuestos separados no son coloreados es necesario revelar la posición de dichos compuestos, para ello existen dos tipos de métodos:

  • Métodos químicos.
  • Métodos físicos.

Métodos químicos

Consisten en ralizar una reacción química entre un reactivo revelador y los componentes separados, para ello se pulveriza la placa con los reactivos reveladores con la ayuda de un pulverizador de vidrio y una pera de goma, o mediante un dispositivo que proporcione aire comprimido.

Es preferible pulverizar con las placas en posición horizontal. Si el reactivo revelador es peligroso o muy corrosivo, la pulverización deberá realizarse en una vitrina de gases bien ventilada.

La pulverización se realizará poco a poco. En cromatografía en capa fina no puede realizarse el bañado del cromatograma (en cromatografía en papel sí).

Generalmente se utiliza como reactivo revelador yodo, el cual forma complejos coloreados con los componentes orgánicos (con tonos amarillo-marrón), pero las manchas desaparecen con el tiempo con lo que es conveniente señalar las manchas aparecidas.

Otro reactivo revelador bastante utilizado es el ácido sulfúrico, que reacciona con los componentes orgánicos produciendo manchas negras.

El tamaño de las manchas no está relacionado con la cantidad de componente separado.

Además de estos reveladores generales, existen otros específicos:

  • 2,4 - dinitrofenilhidracina (para aldehidos y cetonas).
  • Verde de bromocresol (para ácidos carboxílicos).
  • Paradimetil aminobenzaldehido (para aminas).
  • Ninhidrina (para aminoácidos).

Métodos físicos.

El más común consiste en añadir al adsorbente un indicador fluorescente. De tal forma que al colocar la placa bajo una lámpara ultravioleta, y dependiendo del indicador y de la longitud de onda, aparecen manchas fluorescentes en las zonas en las que hay componentes, o en otros casos aparece toda la placa fluorescente excepto donde hay componentes.

Algunos compuestos poseen cierta fluorescencia (aunque no es normal) con lo que pueden ser detectados directamente en una lámpara de ultravioleta.

Constantes Rf Y Rx

La constante RF (Ratio of Front) es simplemente una manera de expresar la posición de un compuesto sobre una placa como una fracción decimal, mide la retención de un componente. Se define como:

Constantes Rf Y Rx

La distancia recorrida por el compuesto se mide generalmente desde el centro de la mancha, los cálculos se simplifican si el denominador es 10. Para que los RF sean reproducibles deben ser fijadas una serie de condiciones (Espesor de la placa, fase móvil, fase estacionaria, cantidad de muestra). El máximo valor de RF que se puede alcanzar es de 1, lo ideal es un RF entre 0.65 y 0.7.

Para averiguar si dos compuestos son iguales, se colocan ambos sobre la misma placa y se desarrolla con varios eluyentes. Una vez desarrollados se calculan los RF y si son distintos, puede deducirse con toda seguridad que no se trataba del mismo compuesto. Por el contrario si los RF son iguales los compuestos pueden ser iguales o no serlo.

Si se sospecha que dos compuestos son muy parecidos se eluyen sobre la misma placa con el mismo eluyente u otros de menor polaridad, hasta apreciar una separación mínima. En este caso no se pueden usar reveladores químicos, ya que alterarían los compuestos, sino indIcador ultravioleta.

También se puede operar de la manera siguiente: Se selecciona un compuesto (X), que tenga una posición de desarrollo conveniente; todos los demás compuestos sobre la placa se relacionan con éste. De esta manera se tiene el , RX , ya que:

cromatografía en columna

La cromatografía es una técnica que se emplea en el fraccionamiento de proteínas. Consiste en la aplicación de una muestra compleja de proteínas a una columna de cristal en la que se ha situado una matriz sólida porosa que está inmersa en el solvente. A continuación se bombea una gran cantidad de solvente a través de la columna. Las diferentes proteínas se van retrasando de manera distinta según sus interacciones con la matriz, por lo que pueden ser recogidas separadas a medida que son eluidas por el fondo de la columna. Según la matriz escogida, las proteínas se pueden separar de acuerdo a su carga, su hidrofobicidad, su tamañó o su capacidad de unirse a grupos químicos particulares. La pureza de las fracciones obtenidas se suele comprobar mediante la electroforesis en geles de poliacrilamida.

En toda cromatografía hablaremos de los siguientes términos :

· matriz de la columa. Sustancia que está empapada de solvente y que se empaqueta en la columna. También se denomina el lecho de la columna.

· longitud de la columna. Longitud del dispositivo en el que se empaqueta la columna. Es importante en algunos tipos de cromatografía como la de filtración en gel y poco importante en otras como la cromatografía de afinidad.

· volumen de la columna. Volumen total de gel que se empaqueta en una columna cromatográfica.

· volumen muerto de la columna. Cantidad de solvente que tiene que atravesar la columna para asegurar que se ha reemplazado completamente. Coincide con el volumen de solvente que sale de la columna desde que se aplica la muestra hasta que empieza a salir la primera proteína. En general, y dependiendo del tipo de cromatografía puede ser de 1 a varias veces el volumen de la columna.

· 'Run Throught'. Es, en columnas de intercambio iónico o de afinidad, el volumen de solvente más proteínas que atraviesa la columna sin quedar retenido en ella. Correspondería en el caso de la cromatografía de afinidad al volumen de solvente que contiene las proteínas no afines al ligando.

Cromatografía de intercambio iónico


La cromatografía de intercambio iónico (o cromatografía iónica) es un proceso que permite la separación de iones y moléculas polares basado en las propiedades de carga de las moléculas. Puede ser usada en casi cualquier tipo de molécula cargada, incluyendo grandes proteínas, pequeños nucleótidos y aminoácidos. La solución que debe inyectarse es usualmente llamada "muestra" y los componentes separados individualmente son llamados analitos. Es usada a menudo en purificación de proteínas, análisis de agua o control de calidad.

La cromatografía de intercambio iónico conserva los analitos basandóse en las interacciones de Coulomb. La fase estacionaria muestra en la superficie grupos funcionales iónicos que interactúan con iones de carga opuesta del analito. Este tipo de cromatografía se subdivide a su vez en la cromatografía de intercambio catiónico y cromatografía de intercambio aniónico:

* La cromatografía de intercambio catiónico retiene cationes cargados positivamente debido a que la fase estacionaria muestra un grupo funcional cargado negativamente, como un ácido fosfórico
* La cromatografía de intercambio de aniones retiene aniones usando grupos funcionales cargados positivamente, como un catión de amonio cuaternario.

R-A-H+ + M+ + B- <--> R-A-M+ + H+ + B-

Un muestra es introducida, de forma manual o con autosampler, dentro de un ciclo de muestras de volumen conocido. Una solución buffer acuosa conocida como fase móvil del bucle a la columna que contiene alguna forma de material en fase estacionaria. Esto es típicamente una resina o matriz de gel que consiste en agarosa o celulosa unido a grupos funcionales cargados. Los analitos objetivo (aniones o cationes) son conservados en la fase estacionariapero pueden ser eliminados incrementando la concentración de especies de similar carga que pueden desplazar los iones analitos de la fase estacionaria. Por ejemplo, en la cromatografía de intercambio catiónico, los analitos cargados positivamente pueden ser desplazados agregando iones de sodio cargados positivamente. Los analitos de interés pueden entonces ser detectados de varias maneras, típicamente por conductividad o por absorción de luz UV/Visible.

Para controlar un sistema CI, usualmente es necesario un Sistema de Datos Cromatográficos (Chromatography Data System, CDS). Además de los sistemas CI, algunos de estos CDS también pueden controlar sistemas de cromatografía de gas y HLPC.


Cromatografía líquida de alta eficacia



La Cromatografía líquida de alta eficacia o High performance liquid chromatography (HPLC) es un tipo de cromatografía en columna utilizada frecuentemente en bioquímica y química analítica. También se la denomina a veces Cromatografía líquida de alta presión o High pressure liquid chromatography (HPLC), aunque esta terminología se considera antigua y está en desuso. El HPLC es una técnica utilizada para separar los componentes de una mezcla basándose en diferentes tipos de interacciones químicas entre las sustancias analizadas y la columna cromatográfica.


Tipos de HPLC

Cromatografía de fase normal

La cromatografía de fase normal o "Normal phase HPLC" (NP-HPLC) fue el primer tipo de sistema HPLC utilizado en el campo de la química, y se caracteriza por separar los compuestos en base a su polaridad. Esta técnica utiliza una fase estacionaria polar y una fase móvil apolar, y se utiliza cuando el compuesto de interés es bastante polar. El compuesto polar se asocia y es retenido por la fase estacionaria. La fuerza de absorción aumenta a medida que aumenta la polaridad del compuesto y la interacción entre el compuesto polar y la fase estacionaria polar (en comparación a la fase móvil) aumenta el tiempo de retención.

La fuerza de interacción no sólo depende de los grupos funcionales del compuesto de interés, sino también en factores estericos de forma que los isómeros estructurales a menudo se pueden diferenciar el uno del otro. La utilización de disolventes más polares en la fase móvil disminuye el tiempo de retención de los compuestos mientras que los disolventes más hidrofóbicos tienden a aumentar el tiempo de retención.

La NP-HPLC cayó en desuso a los años setenta con el desarrollo del HPLC de fase reversa o Reversed-phase HPLC debido a la falta de reproductibilidad de los tiempos de retención puesto que los disolventes próticos cambiaban el estado de hidratación de la silica o alúmina de la cromatografía.
[editar] Cromatografía de fase reversa

La HPLC de fase reversa (RP-HPLC) consiste en una fase inmóvil apolar y una fase móvil de polaridad moderada. Una de las fases estacionarias más comunes de este tipo de cromatografía es la silica tratada con RMe2SiCl, dónde la R es una cadena alquil tal como C18H37 ó C8H17. El tiempo de retención es mayor para las moléculas de naturaleza apolar, mientras que las moléculas de carácter polar eluyen más rápidamente.

El tiempo de retención aumenta con la adición de disolvente apolar a la fase móvil y disminuye con la introducción de disolventes mas hidrofobicos. La cromatografía de fase reversa es tan utilizada que a menudo se lo denomina HPLC sin ninguna especificación adicional. La cromatografía de fase reversa se basa en el principio de las interacciones hidrofóbicas que resultan de las fuerzas de repulsión entre un disolvente relativamente polar, un compuesto relativamente apolar, y una fase estacionaria apolar. La fuerza conductora en la unión del compuesto a la fase estacionaria es la disminución del área del segmento apolar del analito expuesto al disolvente.Este efecto hidrofóbico está dominado por la disminución de la energía libre de la entropía asociada con la minimización de la interfase compuesto-disolvente polar. El efecto hidrofóbico disminuye con la adición de disolvente apolar a la fase móvil. Esto modifica el coeficiente de partición de forma que el compuesto se mueve por la columna y eluye.

Las características del compuesto de interés juegan un papel muy importante en la retención. En general, un compuesto con una cadena alquil larga se asocia con un tiempo de retención mayor porque aumenta la hidrofobicidad de la molécula. Aun así, las moléculas muy grandes pueden ver reducida la interacción entre la superficie del compuesto y la fase estacionaria. El tiempo de retención aumenta con el área de superficie hidrofóbica que suele ser inversamente proporcional al tamaño del compuesto. Los compuestos ramificados suelen eluir más rápidamente que sus isómeros lineales puesto que la superficie total se ve reducida.

Aparte de la hidrofobicidad de la fase móvil, otras modificaciones de la fase móvil pueden afectar la retención del compuesto; por ejemplo, la adición de sales inorgánicas provoca un aumento lineal en la tensión superficial, y como que la entropía de la interfase compuesto-disolvente está controlada precisamente por la tensión superficial, la adición de sales tiende a aumentar el tiempo de retención.

Otra variable importante es el pH puesto que puede cambiar la hidrofobicidad del compuesto. Por este motivo, la mayoría de métodos utilizan un tampón como el fosfato de sodio para controlar el valor del pH. Estos tampones controlan el pH, pero también neutralizan la carga o cualquiera resto de silica de la fase estacionaria que haya quedado expuesta y actúan como contraiones que neutralizan la carga del compuesto. El efecto de los tampones sobre la cromatografía puede variar, pero en general mejoran la separación cromatográfica.

Las columnas de fase reversa se echan a perder con menor facilidad que las columnas de silica normales. Aun así, muchas columnas de fase reversa están formadas por silica modificada con cadenas alquil y no se deben utilizar nunca con bases en medio acuoso puesto que éstas podrían dañar el esqueleto de silica subyacente. Las columnas se pueden utilizar en ácidos en medio acuoso pero no deberían estar expuestas demasiado tiempo al ácido porque puede corroer las partes metálicas del aparato de HPLC.
[editar] Cromatografía de exclusión molecular

La cromatografía de exclusión molecular, también conocida como cromatografía por filtración en gel, separa las partículas de la muestra en función de su tamaño. Generalmente se trata de una cromatografía de baja resolución de forma que se suele utilizar en los pasos finales del proceso de purificación. También es muy útil para la determinación de la estructura terciaria y la estructura cuaternaria de las proteínas purificadas.

La cromatografía de filtración molecular es un método de cromatografía en columna por el cual las moléculas se separan en solución según su peso molecular, o más precisamente, según su radio de Stokes.

En esta cromatografía, la fase estacionaria consiste en largos polímeros entrecruzados que forman una red tridimensional porosa. A los fines prácticos, la columnas se empaquetan con pequeñas partículas esferoidales formadas por esos polímeros entrecruzados. En consecuencia, estas partículas son porosas, y el tamaño de los poros es tal que algunas moléculas (las demasiado grandes) no podrán ingresar a esos poros, en tanto que otras (las suficientemente pequeñas) podrán pasar libremente. Los poros quedan conectados formando una malla o red, lo cual determina una serie de caminos a ser recorridos por las moléculas que acceden al interior de esta.

Cromatografía de intercambio iónico


En la cromatografía de intercambio iónico, la retención se basa en la atracción electrostática entre los iones en solución y las cargas inmovilizadas a la fase estacionaria. Los iones de la misma carga son excluidos mientras que los de carga opuesta son retenidos por la columna. Algunos tipos de intercambiadores iónicos son: i) Resinas de poliestireno, ii) intercambiadores iónicos de celulosa y dextranos (geles) y iii) Silica porosa o vidrio de tamaño de poro controlado. En general los intercambiadores iónicos favorecen la unión de iones elevada carga y radio pequeño. Un incremento en la concentración del contraión (respeto a los grupos funcionales de la resina) reduce el tiempo de retención. Un incremento en el pH reduce el tiempo de retención en las cromatografías de intercambio catiònico mientras que una disminución del pH reduce el tiempo de retención en las cromatografías de intercambio aniònic. Este tipo de cromatografía es ampliamente utilizado en las siguientes aplicaciones: purificación de agua, concentración de componentes traza, Ligand-exchange chromatography, Ion-exchange chromatography of proteins, High-pH anion-exchange chromatography of carbohydrates and oligosaccharides, etc.


Cromatografía basada en bioafinidad


Este tipo de cromatografía se basa en la capacidad de las sustancias biológicamente activas de formar complejos estables, específicos y reversibles. La formación de estos complejos implica la participación de fuerzas moleculares como las interacciones de Van der Waals, interacciones electrostáticas, interacciones dipolo-dipolo, interacciones hidrofóbicas y puentes de hidrógeno entre las partículas de la muestra y la fase estacionaria.


Cromatografía de gases


La cromatografía de gases es una técnica cromatográfica en la que la muestra se volatiliza y se inyecta en la cabeza de una columna cromatográfica. La elución se produce por el flujo de una fase móvil de gas inerte. A diferencia de los otros tipos de cromatografía, la fase móvil no interacciona con las moléculas del analito; su única función es la de transportar el analito a través de la columna.

Existen dos tipos de cromatografía de gases (GC): la cromatografía gas-sólido (GSC) y la cromatografía gas-líquido (GLC), siendo esta última la que se utiliza más ampliamente, y que se puede llamar simplemente cromatografía de gases (GC). En la GSC la fase estacionaria es sólida y la retención de los analitos en ella se produce mediante el proceso de adsorción. Precisamente este proceso de adsorción, que no es lineal, es el que ha provocado que este tipo de cromatografía tenga aplicación limitada, ya que la retención del analito sobre la superficie es semipermanente y se obtienen picos de elución con colas. Su única aplicación es la separación de especies gaseosas de bajo peso molecular. La GLC utiliza como fase estacionaria moléculas de líquido inmovilizadas sobre la superficie de un sólido inerte.

La GC se lleva a cabo en un cromatógrafo de gases. Éste consta de diversos componentes como el gas portador, el sistema de inyección de muestra, la columna (generalmente dentro de un horno), y el detector.


Espectrometría

Espectrometría - Prisma
Dispersión de luz en un prisma triangular
La espectroscopia surgió con el estudio de la interacción entre la radiación y la materia como función de la longitud de onda (λ). En un principio se refería al uso de la luz visible dispersada según su longitud de onda, por ejemplo por un prisma. Más tarde el concepto se amplió enormemente para comprender cualquier medida en función de la longitud de onda o de la frecuencia. Por tanto, la espectroscopia puede referirse a interacciones con partículas de radiación o a una respuesta a un campo alternante o frecuencia variante (ν). Una extensión adicional del alcance de la definición añadió la energía (E) como variable, al establecerse la relación E=hν para los fotones. Un gráfico de la respuesta como función de la longitud de onda (o más comúnmente la frecuencia) se conoce como espectro.

La espectrometría es la técnica espectroscópica para tasar la concentración o la cantidad de especies determinadas. En estos casos, el instrumento que realiza tales medidas es un espectrómetro o espectrógrafo.

La espectrometría a menudo se usa en física y química analítica para la identificación de sustancias mediante el espectro emitido o absorbido por las mismas.

La espectrometría también se usa mucho en astronomía y detección remota. La mayoría de los telescopios grandes tienen espectrómetros, que son usados para medir la composición química y propiedades físicas de los objetos astronómicos, o para medir sus velocidades a partir del efecto Doppler de sus líneas espectrales.


Centrifugacion

La centrifugación es un método por el cual se pueden separar sólidos de líquidos de diferente densidad mediante una fuerza rotativa , la cual imprime a la mezcla con una fuerza mayor que la de la gravedad, provocando la sedimentación de los sólidos o de las partículas de mayor densidad. Este es uno de los principios en los que la densidad: Todas lículas, por posa, sectadas por cualquier y una extensa variedad de técnicas derivadas de esta. Donde la fuerza es mayor a la gravedad.

CENTRIFUGACION GRADIENTE

Muestra : parte superior como una fina banda. Función del gradiente : estabilizar el medio, va de la parte superior con la d min hasta el fondo con la d max ->variación gradual de la densidad en el medio. Separación de los componentes de la muestra en bandas o zonas

CENTRIFUGACION DIFERENCIAL:

La muestra se distribuye homogénea- por todo el tubo. Separación de las partículas en función de su s. Capacidad de separación pobre, ya q como se distribuyen por todo el tubo en el pellet habrá de todas las partículas, abundaran las de mayor s ->no hay pureza.

Útil : aislamiento de células y orgánulos subcelulares

Para evitar la baja resolución podemos colocar la muestra en una banda estrecha, así todas las partículas parten de un mismo pto-> fraccionamiento. Se pueden producir corrientes de convección , reorganización del líquido -> evita usando gradientes de densidad.

Ultracentrifugación:

Permite estudiar las características de sedimentación de estructuras subcelulares (lisosomas, ribosomas y microsomas) y biomoléculas. Utiliza rotores (fijos o de columpio) y sistemas de monitoreo. Existen diferentes maneras de monitorear la sede las partículas en la ultracentrifugación, el más común de ellos mediante luz Uerfresones.

No hay comentarios:

Publicar un comentario